1.出租车队去机场接某会议的参会者,如果每车坐3名参会者,则需另外安排一辆大巴送走余下的50人;如每车坐4名参会者,则最后正好多出3辆空车。问该车队有多少辆出租车?( )
A.50
B.55
C.60
D.62
2.某产品售价为67.1元,在采用新技术生产节约10%成本之后,售价不变,利润可比原来翻一番。则该产品最初的成本为_______元。( )
A.51.2
B.54.9
C.61
D.62.5
3.某商场开展购物优惠活动:一次购买300元及以下的商品九折优惠;一次购买超过300元的商品,其中300元九折优惠,超过300元的部分八折优惠。小王购物第一次付款144元,第二次又付款310元。如果他―次购买并付款,可以节省多少元?( )
A.16
B.22.4
C.30.6
D.48
4.有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?( )
A.7
B.10
C.15
D.20
5.60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?( )
A.15
B.13
C.10
D.8
安徽公务员考试网(http://www.anhuigwy.org/)参考答案解析 题目或解析有误,我要纠错。
1.【解析】D。方程问题。设有x辆出租车,由题意列方程:3x+50=4(x-3),解得x=62。
2.【解析】C。本题可采用方程法。设该产品最初的成本为元。由题意得:67.1-0.9x=2(67.1-x),解得x=61。因此该产品最初的成本为61元。
3.【解析】A。统筹优化问题。由题意,第一次付款144元可得商品原价为160元;第二次付款为310元可得原价为350元。故总价510元,按照优惠,需付款300×0.9+210×0.8=438(元),节省了454-438=16(元)。
4.【解析】B。最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。
5.【解析】B。最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。